ISSN 2079-3537      

 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             

Scientific Visualization, 2025, volume 17, number 4, pages 65 - 76, DOI: 10.26583/sv.17.4.07

FakeSegment: Deep Feature Maps Analysis and Visualization for Enhancing of Synthetic Image Realism

Authors: V. Aleksandrov1,A, V.V. Kniaz2,À,Â, M. Samodurov3,A

A State Research Institute of Aviation Systems (GosNIIAS), Moscow, Russia

B Moscow Institute of Physics and Technology (MIPT), Moscow, Russia

1 ORCID: 0009-0005-6084-9510, vsaleksandrov@gosniias.ru

2 ORCID: 0000-0003-2912-9986, vl.kniaz@gosniias.ru

3 ORCID: 0009-0005-2575-5308, manifest@gosniias.ru

 

Abstract

The generation of synthetic datasets for training neural models in object detection and recognition tasks has become a prevalent approach due to the cost and time savings compared to collecting real world data. However, synthetic images often lack critical details, which can degrade the performance of trained models. To address this issue, we propose the FakeSegment neural model, designed to annotate unrealistic parts of synthetic images. Our method utilizes two Single Shot Multibox Detector (SSD) networks with shared weights. By analyzing the differences in corresponding feature maps from real and images. By comparing these feature maps, we can pinpoint areas where synthetic images diverge from expected patterns observed in real-world data. FakeSegment automatically detects unnatural areas within the synthetic data. We evaluate our model on two datasets: the FantasticReality dataset and a newly introduced UnrealLanding dataset focused on aircraft safety during landing. Our contributions include (1) the development of the FakeSegment model, (2) the creation of the UnrealLanding dataset with paired synthetic and real images, and (3) a comprehensive evaluation demonstrating that Fake Segment outperforms baseline methods by 15% in Intersection over Union (IoU) for segmenting unreal parts.

 

Keywords: generative modeling, image synthesis, image enhancement, object detection.