ISSN 2079-3537      

 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             





Scientific Visualization, 2025, volume 17, number 4, pages 57 - 64, DOI: 10.26583/sv.17.4.06

Development and Application of Machine Vision Algorithms for Workpiece Positioning in Multi-Axis Laser Processing

Authors: A.A. Molotkov1,A, O.N. Tretyakova2,A, D.N. Tuzhilin3,B, A.A. Shamordin4,B

A Moscow Aviation Institute (National Research University), Moscow

B LLC “Laboratory of Industrial Research,” Lasers and Equipment TM Group, Moscow

1 ORCID: 0000-0002-9335-5219, karacerr@gmail.com

2 ORCID: 0000-0003-0256-4558, tretiyakova_olga@mail.ru

3 ORCID: 0000-0002-8570-1732, tuzhilin@laserapr.ru

4 ORCID: 0009-0001-5092-3351, amordin@laser-app.ru

 

Abstract

This paper addresses the problem of positioning workpieces with curved surfaces for subsequent multi-axis laser processing. The solution is based on recognizing the position of the drawing’s zero point, physically formed by surface height variations of the workpiece. The paper presents an approach to visualizing and detecting the drawing’s zero point using machine vision algorithms applied to a video stream from an industrial digital camera. An algorithm for object boundary detection is described, employing a modified breadth-first search (BFS) with subsequent path reconstruction to the boundary. The developed software module is capable of detecting either the coordinate of a hole center or a workpiece boundary, relative to which multi-axis processing is carried out. In addition, the features of calculating the pixel-to-millimeter conversion coefficient for axis motion are considered, enabling precise movement according to the video channel image. This approach significantly reduces the time required for manual positioning and improves both accuracy and repeatability of the process.

 

Keywords: multi-axis positioning, video-based positioning, image processing, filtering pipeline, machine vision.