ISSN 2079-3537      

 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             

Scientific Visualization, 2025, volume 17, number 4, pages 18 - 29, DOI: 10.26583/sv.17.4.03

On Visualization of Functions in High-Dimensional Space

Authors: A.K. Alekseev1,B, A.E. Bondarev2,A

A Keldysh Institute of Applied Mathematics RAS

B RSC Energia, Korolev, Russia

1 ORCID: 0000-0001-8317-8688, post@rsce.ru

2 ORCID: 0000-0003-3681-5212, bond@keldysh.ru

 

Abstract

Problems associated with data visualization in multidimensional space are considered. One option discussed is the use of Riemannian space with variable curvature in magnitude and sign for modeling the visualization space. The Hilbert-Einstein, Winslow, and Beltrami equations are considered for modeling the visualization and perception space using geometry. The Beltrami equations can, to some extent, mitigate the problems associated with visualizing multidimensional functions, but are limited by two-dimensionality. The use of Hilbert-Einstein equations is complicated by both the ambiguity of interpreting a priori information and technical difficulties. The most promising approach appears to be the use of Winslow-type equations, which correspond to the construction of harmonic coordinates for the Hilbert-Einstein equations.

 

Keywords: multidimensional space, visualization, Riemannian space, Beltrami equation, Winslow equations, Hilbert-Einstein equations.