ISSN 2079-3537      

 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             

Scientific Visualization, 2025, volume 17, number 4, pages 77 - 86, DOI: 10.26583/sv.17.4.08

Integration of Generative Neural Networks in Mathematical and Three-Dimensional Modeling: Current State

Authors: N.A. Bondareva1, A.E. Bondarev2, S.V. Andreev3, I.G. Ryzhova4

Keldysh Institute of Applied Mathematics RAS, Moscow, Russia

1 ORCID: 0000-0002-7586-903X, nicibond9991@gmail.com

2 ORCID: 0000-0003-3681-5212, bond@keldysh.ru

3 ORCID: 0000-0001-8029-1124, esa@keldysh.ru

4 ORCID: 0000-0003-1613-3038, ryzhova@gin.keldysh.ru

 

Abstract

This article provides a review of contemporary approaches to the application of generative neural networks in mathematical and three-dimensional modeling tasks. It examines the theoretical foundations of generative neural networks, their architectures, and training methodologies. Existing approaches to mathematical and three-dimensional modeling are analyzed, along with the potential for integration with generative neural networks. Particular emphasis is placed on hybrid approaches that combine the advantages of generative neural networks with traditional methods and expert knowledge, ensuring higher accuracy, reliability, and controllability of results. The article discusses the development prospects and socio-economic implications of implementing hybrid neural network technologies in engineering and scientific domains.

 

Keywords: generative neural networks, hybrid approach, mathematical modeling, three-dimensional modeling, artificial intelligence, automation, validation, machine learning.