ISSN 2079-3537      

 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             





Scientific Visualization, 2025, volume 17, number 3, pages 25 - 34, DOI: 10.26583/sv.17.3.03

Development of a Methodology for the Application of Generative Neural Networks in Creating 3d Models

Authors: N.A. Bondareva1, A.E.  Bondarev2, S.V. Andreev3, I.G. Ryzhova4

Keldysh Institute of Applied Mathematics RAS, Moscow, Russia

1 ORCID: 0000-0002-7586-903X, nicibond9991@gmail.com

2 ORCID: 0000-0003-3681-5212, bond@keldysh.ru

3 ORCID: 0000-0001-8029-1124, esa@keldysh.ru

4 ORCID: 0000-0003-1613-3038, ryzhova@gin.keldysh.ru

 

Abstract

The article considers the current scientific and technical problem of integrating generative neural network architectures into the process of automated 3D modeling. Despite significant progress in this area, existing solutions are often characterized by insufficient transparency and limited capabilities of deterministic control by design engineers. In this regard, the concept of an innovative hybrid methodological approach based on the synergistic interaction of intelligent natural language processing systems and verified engineering software packages is proposed. The purpose of the proposed approach is to significantly increase the efficiency and accuracy of the design process by minimizing the likelihood of errors and ensuring the possibility of prompt adjustment at all stages of creating 3D models. The methodology is based on the integration of AI capabilities in the field of semantic analysis and generation of variable design solutions with existing CAD modeling algorithms. The results of experimental verification of the proposed concept are presented, demonstrating a significant reduction in the time spent on creating 3D models compared to traditional methods, which indicates the promise of the developed approach for practical application in engineering activities.

 

Keywords: 3d modeling, Computer-aided design (CAD), Generative neural networks, Autostereoscopic monitor.